Приставка для измерения тока мультиметру. Приставки к мультиметру схемы

Принципиальная схема самодельной приставки к мультиметру для измерения частоты в пределах 5Гц-20МГц.

В некоторых цифровых мультиметрах, например, MY64, MY68, М320, M266F имеется встроенная функция измерения частоты, благодаря чему мультиметр может использоваться как цифровой частотомер. К сожалению, недорогие мультиметры обычно могут измерять частоту не выше 2 кГц...1 МГц, кроме того, имеют низкую чувствительность.

Чтобы расширить диапазон измеряемых частот и повысить чувствительность прибора в режиме работы частотомером, можно изготовить несложное устройство на современных КМОП микросхемах.

Схема приставки

На рис. 1 представлена принципиальная схема активного входного щупа-делителя частоты, способного корректно работать в диапазоне входных частот 5 Гц...20 МГц. При построении таких узлов приходится сталкиваться с двумя противоречиями.

Для измерения низких частот устройство должно содержать формирователь сигналов прямоугольной формы из сигналов произвольной формы (компаратор), за которым следует триггер Шмитта.

Иначе частотомер может работать некорректно, из-за затянутых фронтов сигналов могут возникнуть ложные переключения логических элементов, счётчиков - частотомер будет показывать завышенные значения измеряемых частот.

Но формирователь сигналов прямоугольной формы и триггер Шмитта обычно плохо работают на частотах выше единиц...десятков МГц, поэтому в режиме измерения сигналов высоких частот входной сигнал подают на делитель частоты с выхода усилителя-ограничителя.

На вход устройства, о котором пойдёт речь, можно подавать сигнал амплитудой до 300 В при частоте до 30 кГц и амплитудой до 30 В при частоте сигнала 20 МГц (кратковременно) или амплитудой до 15 В, частота 20 МГц, непрерывно. В случае необходимости измерять частоту сигнала большей амплитуды, на вход активного щупа можно подключить дополнительный резистор.

Диоды VD1 - VD8 ограничивают амплитуду входных сигналов до 2 В, защищая VТ1 от пробоя изолятора затвора высоким входным напряжением или статическим электричеством. Таким образом, при измерении частоты сигналов амплитудой до 2 Вольт, щуп имеет входное сопротивление, примерно равное сопротивлению резистора R5 - 1,2 МОм.

Полевой транзистор с изолированным затвором VТ1 усиливает амплитуду входного сигнала примерно в 4 раза. Входная ёмкость щупа определяется ёмкостью монтажа и ёмкостью затвора VТ1, около 7 пФ. Конденсатор СЗ разделительный.

Усилительный каскад на VТ1 получает питание через LC фильтр L1C4.

Рис. 1. Принципиальная схема приставки-делителя к мультиметру для измерения частоты в пределах 5Гц-20МГц.

На высокочастотных транзисторах VТ2 -VТ4 собран предварительный формирователь сигналов прямоугольной формы. Минимальная амплитуда входного сигнала, при которой начинает работать формирователь, около 0,2 В. Для сравнения, мультиметр М320 начинает измерять частоту при амплитуде более 1,1 В. Режим работы формирователя устанавливают подстроечным резистором R16.

Конденсатор С10 повышает усиление каскада на VТЗ, VТ4. Узел на транзисторах VТ2 - VТ4 получает питание через LC фильтр L2C8C11.

С вывода коллектора VТ4 сигнал, формой близкой к прямоугольной, поступает на триггер Шмитта, реализованный на двух логических элементах 2И-НЕ DD1.1, DD1.2 и резисторах R6, R4. Корректирующая цепочка R3, С1 предотвращает ложные срабатывания триггера. Через буферный элемент DD1.3 сигнал прямоугольной формы поступает на вход «+1» двоично-десятичного счётчика DD2.

Счётчик DD2 в этой схеме работает как делитель частоты на 10. Сигнал частотой в 10 раз меньшей снимается не с выходов переноса, выводы 12 или 13, а с выхода «Q4» - вывод 6. Такое решение связано с тем, что сигнал на выводах 12, 13 очень короткий, что может негативно сказаться на работе подключенного к выходу щупа частотомера.

На выходе «Q4» форма сигнала близка к меандру. Резистор R10 и диоды VD9, VD10 защитные.

На логическом элементе DD1.4, ограничительном резисторе R12, диодах VD11, VD12, конденсаторах С9, С16 и красном кристалле светодиода HL1 собран индикатор наличия входного сигнала амплитудой более 0,2 В. При включении питания, HL1 светит зелёным цветом, при подаче на вход устройства входного сигнала цвет свечения HL1 меняется на жёлтый.

Диод VD13 защищает конструкцию от переполюсовки напряжения питания. При напряжении питания 5 В устройство потребляет ток около 12 мА при отсутствии сигнала на входе и около 35 мА при частоте входного сигнала 15 МГц. Для сравнения, аналогичный щуп-делитель частоты на двух ТТЛ микросхемах К155ЛАЗ, К155ИЕ9, собранный четверть века назад, потреблял ток 240 мА.

При напряжении питания 3,3 В верхняя граница измеряемых частот снижается до 4 МГц.

Детали и монтаж

Большинство деталей устройства установлены на монтажной плате размером 124x22 мм, монтаж двусторонний навесной. Общий минусовый провод идёт по бокам с обеих сторон платы по всей ёё длине, через каждые 15...20 мм между продольными шинами общего провода установлены проволочные перемычки, таким образом, топология общего провода напоминает «лесенку».

КМОП микросхемы серии ***74АС*** при напряжении питания 5 В работоспособны на частотах до 120 МГц. В этом устройстве вместо микросхемы IN74AC00N можно применить КР1554ЛАЗ или любую из серий ***74АС00*, ***74НС00*, ***74НСТ00*. Вместо микросхемы IN74AC192 подойдёт КР1554ИЕ6 или любая из серий ***74АС192*, ***74НС192*, ***74НСТ192*.

Для удобства монтажа предпочтительнее устанавливать микросхемы в корпусах DIP. Вместо полевого транзистора КП305Д подойдёт любой из серий КП305, 2П305. На время монтажа обязательно закорачивайте выводы этого транзистора проволочной перемычкой, иначе транзистор будет повреждён.

Резистором R8 устанавливают режим работы этого транзистора, при напряжении питания 5 В на выводе стока нужно установить напряжение 2...3 В относительно общего провода. Чтобы не повредить этот транзистор во время подбора R8 на его место можно установить резистор сопротивлением 1 кОм, к которому потом будет параллельно установлен добавочный резистор. Транзистор КП303И можно заменить на 2П303И, 2П303Д, КП303Д.

При выборе транзистора на место VТ2 учитывайте, что транзисторы серий 2П303, КП303 с буквенными индексами А, Б, В относятся к низкочастотным. Подбором сопротивления резистора R10 устанавливают режим работы этого транзистора. Вход щупа на время подбора сопротивлений резисторов R8, R10 должен быть закорочен.

Транзисторы 2SC9018 можно заменить на любые из SS9018, SS9016, КТ6113. Вместо диодов 1 N914 подойдут любые из 1 N4148, 1SS176, 1SS244, КД503, КД509, КД510, КД521, КД522. Диод 1N5393 можно заменить любым из 1 N5391 - 1 N5399, FR151 - FR157, КД258, КД257, КД226. Двукристальный светодиод L-59SURKNGKW можно заменить любым аналогичным красно-зелёным из серий L-59, L-119, L-239.

Конденсатор С14 любой алюминиевый оксидный или тантало-вый на напряжение не ниже 6 В. Конденсатор С2 высоковольтный керамический. Остальные конденсаторы керамические для навесного и поверхностного монтажа, не экономьте на блокировочных конденсаторах. Резисторы любые малогабаритные соответствующей мощности, в том числе SMD для поверхностного монтажа.

Дроссели готовые малогабаритные промышленного изготовления, намотанные на FI-образных ферритовых сердечниках. Чем больше индуктивность и чем меньше сопротивление обмоток этих дросселей, тем лучше.

Для конструкции использован корпус размерами 180x27x20 мм от генератора сетчатого поля для телевизоров УЛПЦТИ. Корпус частично экранирован самоклеящейся алюминиевой фольгой, электрически соединённой с общим проводом, точка подключения к общему проводу - резистор R5.

Если вам потребуется, чтобы этот щуп-делитель частоты работал на более высоких частотах, то в него необходимо установить дополнительный переключатель, который бы отключал входы DD1.3 от выхода DD1.2 и подключал их к выводу стока VT2. Также может потребоваться установка на место VT2 транзистора с большим начальным током стока.

Установка на место VT2 более высокочастотного транзистора из серий КП307, 2П307 может потребовать установки резистора R10 значительно меньшего сопротивления, что увеличит ток потребления, но также увеличит чувствительность щупа на высоких частотах. При наличии на монтажной плате свободного места, вместо восьми диодов VD1 - VD8, включенных параллельно-последовательно, можно установить 16 таких же диодов, что до 4 В увеличит напряжение, при котором источник сигналов не шунтируется защитными диодами. Выводы этих диодов должны быть как можно короче, чтобы уменьшить индуктивность защитной цепи.

Бутов А.Л.

Литература:

  1. Бутов А.Л. Широкополосной формирователь для частотомера. - РК-2001-5.
  2. Бутов А.Л. Формирователь импульсов прямоугольной формы. - РК-2002-9.
  3. Петропавловский И.И., Прибыльский А.В., Троян А.А., Чувелев В.С. Логические ИС КР1533, КР1554.

Начало

Да, эта тема многократно обсуждалась, в том числе и здесь. Я собрал два варианта схемы Ludens и они очень хорошо себя зарекомендовали, тем не менее, у всех предлагаемых ранее вариантов есть недостатки. Шкалы приборов со стрелочными индикаторами очень нелинейны и требуют для калибровки много низкоомных резисторов, эти шкалы надо рисовать и вставлять в головки. Приборные головки велики и тяжелы, хрупки, а корпуса малогабаритных пластмассовых индикаторов обычно запаяны и они часто имеют мелкую шкалу. Слабым местом почти всех предыдущих конструкций является их низкая разрешающая способность. А для конденсаторов LowESR как раз надо измерять сотые доли Ома в диапазоне от нуля до половины Ома. Предлагались также приборы на основе микроконтроллеров с цифровой шкалой, но не всякий занимается микроконтроллерами и их прошивками, устройство получается неоправданно сложным и относительно дорогим. Поэтому в журнале «Радио» сделали разумную рациональную схему - цифровой тестер есть у любого радиолюбителя, да и стоит он копейки.

Я внес минимальные изменения. Корпус - от неисправного «электронного дросселя» для галогеновых ламп. Питание - батарея «Крона» 9 Вольт и стабилизатор 78L05 . Убрал переключатель - измерять LowESR в диапазоне до 200 Ом надо очень редко (если приспичит, использую параллельное подключение). Изменил некоторые детали. Микросхема 74HC132N , транзисторы 2N7000 (to92) и IRLML2502 (sot23). Из-за увеличения напряжения с 3 до 5 Вольт отпала необходимость подбора транзисторов.
При испытаниях устройство нормально работало при напряжении батареи свежей 9,6 В до полностью разряженной 6 В.

Кроме того, для удобства, использовал smd-резисторы. Все smd-элементы прекрасно паяются паяльником ЭПСН-25. Вместо последовательного соединения R6R7 я использовал параллельное соединение - так удобнее, на плате я предусмотрел подключение переменного резистора параллельно R6 для подстройки нуля, но оказалось, что «нуль» стабилен во всем диапазоне указанных мною напряжений.

Удивление вызвало то, что в конструкции «разработанной в журнале» перепутана полярность подключения VT1 - перепутаны сток и исток (поправьте, если я неправ). Знаю, что транзисторы будут работать и при таком включении, но для редакторов такие ошибки недопустимы.

Итого

Данный прибор работает у меня около месяца, его показания при измерениях конденсаторов с ESR в единицы Ом совпадают с прибором по схеме Ludens .
Он уже прошёл проверку в боевых условиях, когда у меня перестал включаться компьютер из-за емкостей в блоке питания, при этом не было явных следов «перегорания», а конденсаторы были не вздувшимися.

Точность показаний в диапазоне 0,01…0,1 Ом позволила отбраковать сомнительные и не выбрасывать старые выпаянные, но имеющие нормальную ёмкость и ESR конденсаторы. Прибор прост в изготовлении, детали доступны и дёшевы, толщина дорожек позволяет их рисовать даже спичкой.
На мой взгляд, схема очень удачна и заслуживает повторения.

Файлы

Печатная плата:
🕗 25/09/11 ⚖️ 14,22 Kb ⇣ 668 Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.

Хорош! Халява кончилась. Хочешь файлы и полезные статьи - помоги мне!

У вас есть мультиметр? Предположим, есть. А температуру он покажет? Чаще всего дешевые китайские приборы лишены этой функции. А хотелось бы. Простейшая приставка термометр к цифровому мультиметру своими руками , которая содержит лишь минимум резисторов (схема показана на рисунке), позволит использовать цифровой милливольтметр (или мультиметр) в качестве измерителя температуры с погрешностью 0,1°С и тепловой инерционностью порядка 10…15 с. При таких характеристиках термометр приставка к мультиметру может применяться и при измерении температуры тела. Сам измерительный прибор в изменениях не нуждается, а изготовить приставку по силам начинающему радиолюбителю. Датчиком приставки является полупроводниковый терморезистор, например СТ3-19 с номиналом 10 килоом при t = 20°С. Совместно с добавочным резистором R 3 он образует одно плечо измерительного моста. Второе плечо - делитель напряжения на резисторах R 4 иR 5 . Резистором R 5 при настройке устанавливается первоначальное значение выходного напряжения. Мультиметр включается в режим измерения постоянного напряжения на пределе 200 или 2000 мВ. Выбором сопротивления R2 изменяется чувствительность моста приставки. Непосредственно перед началом измерения температуры переменным резистором R 1 устанавливается напряжение питания цепи измерения равным тому, при котором проводилась первоначальная калибровка. Термометр из мультиметра включается для отсчета температур кнопочным выключателем SB1, а переводится из режима измерений в режим калибровки - переключателем SB2. Расчет последовательно включенного с терморезистором добавочного резистора R 3 производится по формуле R 3 = RТМ(B - 2TМ)/(B + 2TМ), где RТМ — значение сопротивления терморезистора в средней части диапазона температур; В - постоянная терморезистора; ТM — абсолютное значение температуры в середине измеряемого диапазона Т = t° + 273. Эта величина R 3 обеспечит минимальное отклонение характеристик от линейных. Постоянная терморезистора определяется в результате измерения сопротивления RT 1 и RT 2 терморезистора по двум значениям температуры T 1 и Т 2 с дальнейшими вычислениями по формуле: В = ln(RТ 1 /RТ 2 )/(1/T 1 -1/T 2 ). И напротив, если известны параметры терморезистора с отрицательным температурным коэффициентом сопротивления (TKС), его сопротивление при некоторой температуре Т можно определить пользуясь формулой RТ = RТ 20 e(В/Т-В/293), где RТ 20 - значение сопротивления терморезистора при температуре 20°С. Настройка приставки производится по двум точкам: ТK 1 = ТM+0,707(Т 2 -Т 1 )/2 и ТK 2 =ТM0,707(Т 2 -Т 1 )/2, где ТM = (Т 1 + Т 2 )/2, Т 1 и Т 2 -соответственно начало и конец диапазона температур. При первоначальной калибровке со свежим источником питания сопротивление потенциометра R 1 устанавливается максимальным, для того чтобы при потере емкости и уменьшения напряжения элемента напряжение на мосте сохранилось бы неизменным (ток - потребляемый приставкой около 8 мА). Регулировкой подстроечников R 2 , R 5 добиваются соответствия трех знаков на индикаторе мультиметра, значениям температур терморезистора ТK 1 и ТK 2 , контролируемых точным термометром. Если его нет, можно воспользоваться, например, обычным медицинским градусником для контроля температуры тела в пределах его измерительной шкалы и постоянной температурой кипения воды - 100, или таяния льда - 0°С. Как мультиметр может использоваться практически любой прибор. Резисторы R 2 и R 5 лучше применить многооборотные типа (СП5-1В или СП5-14), а R 1 взять одноповоротный, типа — ППБ; сопротивления R 3 и R 4 — МЛ Т-0,125. Для включения приставки и переключения ее режимов можно применить переключатели П2К без фиксирования. В данной приставке были выставлены границы диапазона измеряемых температур Т 1 = 15°С; Т 2 = 45°С. При измерениях в диапазонах положительных и отрицательных температур по Цельсию, индикация знака происходит автоматически.

Для замера больших токов, как правило, применяют бесконтактный метод, — особыми токовыми клещам. Токовые клещи – измерительное устройство, имеющее раздвижное кольцо, которым охватывают электропровод и на индикаторе прибора отображается величина протекающего тока.

Превосходство подобного метода бесспорно, — чтобы замерить силу тока нет нужды разрывать провод, что в особенности немаловажно при измерении больших токов. В данной статье приводится описание токовые клещи постоянного тока , которые вполне возможно сделать своими руками.

Описание конструкции самодельных токовых клещей

Для сборки устройства понадобится чувствительный датчик Холла, к примеру, UGN3503. На рисунке 1 изображено устройство самодельной клещи. Необходим, как уже сказано, датчик Холла, а так же, кольцо ферритовое диаметром от 20 до 25 мм и крупный «крокодил», к примеру, подобный как на проводах для запуска (прикуривания) автомобиля.

Ферритовое кольцо необходимо точно и аккуратно распилить либо разломить на 2-е половинки. Для этого ферритовое кольцо необходимо сначала подпилить алмазным надфилем или пилкой для ампул. Далее, поверхности разлома ошкурить мелкой шкуркой.

С одной стороны на первую половинку ферритового кольца приклеить прокладку из чертежного ватман. С другой стороны на другую половинку кольца наклеить датчик Холла. Приклеивать лучше всего эпоксидным клеем, только нужно проследить, чтобы датчик Холла хорошо прилегал к зоне разлома кольца.

Следующий шаг – соединяем обе половинки кольца и обхватываем его «крокодилом» и приклеиваем. Теперь при нажатии на ручки «крокодила» ферритовое кольцо будет расходиться.

Электронная схема токовых клещей

Принципиальная электрическая схема приставки к мультиметру изображена на рисунке 2. При протекании тока по электропроводу, вокруг него появляется магнитное поле, и датчик Холла фиксирует силовые линии, проходящие через него, и формирует некоторое постоянное напряжение на выходе.

Данное напряжение усиливается (по мощности) ОУ А1 и идет на выводы мультиметра. Соотношение напряжения на выходе от протекающего тока: 1 Ампер = 1 мВольт. Подстроечные сопротивления R3 и R6 — многооборотные. Для настройки необходим лабораторный блок питания с минимальным током на выходе около 3А, и встроенным амперметром.

Сперва подсоедините данную приставку к мультиметру и выставьте её на нуль путем изменения сопротивления R3 и среднем положении R2. Далее, перед любым измерением необходимо будет выставлять ноль потенциометром R2. Выставьте на блоке питания наименьшее напряжение и подсоедините к нему большую нагрузку, например, электролампу, применяемую в фарах автомобиля. Затем на один из проводов, подсоединенный к данной лампе, зацепите «клещи» (рисунок 1).

Повышайте напряжение, до тех пор, пока амперметр блока питания не покажет 2 ампера. Подкрутите сопротивление R6 так, чтобы величина напряжения мультиметра (в милливольтах) соответствовала данным амперметра блока питания в амперах. Еще несколько раз проконтролируйте показания, меняя силу тока. Посредством этой приставки возможно мерить ток до 500А.

При работе с любыми электроприборами или токопроводящими деталями, наличие измерительной аппаратуры является необходимым, будь то амперметр, вольтметр или омметр. Но для того чтобы не покупать все эти устройства, лучше обзавестись мультиметром.

Мультиметр является универсальным измерительным аппаратом, который позволяет измерить любую характеристику электричества. Мультиметры бывают аналоговые и цифровые.

Аналоговый мультиметр

Данный тип мультеметров отображает показания измерений при помощи стрелки, под которой установлено табло с различными шкалами значений. Каждая шкала отображает показания того или иного измерения, которые подписаны непосредственно на табло. Но для новичков такой мультиметр будет не самым лучшим выбором, поскольку разобраться во всех обозначениях, которые находятся на табло довольно трудно. Это может привести к не правильному пониманию результатов измерения.

Цифровой мультиметр

В отличие от аналоговых, этот мультиметр позволяет с легкостью определять интересуемые величины, при этом его точность измерений гораздо выше по сравнению со стрелочными аппаратами. Также наличие переключателя между различными характеристиками электричества исключает возможность перепутать то или иное значение, поскольку пользователю не нужно разбираться в градации шкалы показаний. Результаты измерений отображаются на дисплее (в более ранних моделях – светодиодных, а в современных – жидкокристаллических). За счет этого цифровой мультиметр комфортен для профессионалов и прост и понятен в использовании для новичков.

Измеритель индуктивности для мультиметра

Несмотря на то, что определять индуктивность при работе с электроникой приходится редко, это все же иногда необходимо, а мультиметры с измерением индуктивности найти достаточно трудно. В данной ситуации поможет специальная приставка к мультиметру, позволяющая измерить индуктивность.

Зачастую для подобной приставки используется цифровой мультиметр установленный на измерение напряжения с порогом точности измерения в 200 мВ, который можно приобрести в любом магазине электро и радиоаппаратуры в готовом виде. Это позволит сделать простую приставку к цифровому мультиметру.

Сборка платы приставки.

Собрать приставку-тестер к мультиметру для измерения индуктивности можно без особых проблем в домашних условиях, обладая базовыми знаниями и навыками в области радиотехники и пайки микросхем.

В схеме платы можно применять транзисторы КТ361Б, КТ361Г и КТ3701 с любыми буквенными маркерами, но для получения более точных измерений лучше использовать транзисторы с маркировкой КТ362Б и КТ363. Эти транзисторы устанавливаются на плате в позициях VT1 и VT2. На позиции VT3 необходимо установить кремневый транзистор со структурой p-n-p, например, КТ209В с любой буквенной маркировкой. Позиции VT4 и VT5 предназначены для буферных усилителей. Подойдет большинство высокочастотных транзисторов, с параметрами h21Э для одного не меньше 150, а для другого более 50.

Для позиций VD и VD2 подойдут любые высокочастотные кремневые диоды.

Резистор можно выбрать МЛТ 0,125 или аналогичный ему. Конденсатор С1 берется с номинальной емкостью 25330 пФ, поскольку он отвечает за точность измерений и ее значение стоит подбирать с отклонением не более 1%. Такой конденсатор можно сделать объединив термостабильные конденсаторы разной емкости (например, 2 на 10000 пФ, 1 на 5100 пФ и 1 на 220 пФ). Для остальных позиций подойдут любые малогабаритные электролитические и керамические конденсаторы с допустимым разбросом в 1,5-2 раза.

Контактные провода к плате (позиция Х1) можно припаять или подключать при помощи пружинящих зажимов для «акустических» проводов. Разъем Х3 предназначен для подключения приставки к .

Проводу к «бананам» и «крокодилам» лучше взять короче, что бы уменьшить влияние их собственной индуктивности на показания замеров. В месте припаивания проводов к плате, соединение стоит дополнительно зафиксировать каплей термоклея.

При необходимости регулирования диапазона измерений на плату можно добавить разъем для переключателя (например, на три диапазона).

Корпус приставки к мультиметру

Корпус можно сделать из уже готового короба подходящего размера или сделать короб самостоятельно. Материал можно выбрать любой, например, пластик или тонкий стеклотекстолит. Короб делается под размер платы, и в нем подготавливаются отверстия для ее крепления. Также делаются отверстия для подключения проводки. Все фиксируется небольшими шурупами.

Питание приставки осуществляется от сети при помощи блока питания с напряжением в 12 В.

Настройка измерителя индуктивности

Для того чтобы откалибровать приставку для измерения индуктивности понадобятся несколько индукционных катушек с известной индуктивность (например, 100 мкГн и 15 мкГн). Катушки по очереди подключаются к приставке и, в зависимости от индуктивности, движком подстроечного резистора на экране мультиметра выставляется значение 100,0 для катушки на 100 мкГн и 15 для катушки на 15 мкГн с точностью 5%. По такому же методу устройство настраивается и в других диапазонах. Важным фактором является то, что для точной калибровки приставки необходимы точные значение тестовых катушек индуктивности.

Альтернативным методом определения индуктивности является программа LIMP. Но этот способ требует некоторой подготовки и понимания работы программы.
Но как в первом, так и во втором случае точность подобных измерений индуктивности будет не очень высока. Для работы с высокоточным оборудованием данный измеритель индуктивности подходит плохо, а для домашних нужд или для радиолюбителей будет отличным помощником.

Проведение замеров индуктивности

После сборки приставку к мультиметру необходимо протестировать. Есть несколько способов, как проверить устройство:

  1. Определение индуктивности измерительной приставки. Для этого необходимо замкнуть два провода, предназначенных для подключения к индуктивной катушке. Например, при длине каждого провода и перемычки 3 см образуется один виток индукционной катушки. Этот виток обладает индуктивностью 0,1 – 0,2 мкГн. При определении индуктивности свыше 5 мкГн данная погрешность не учитывается в расчетах. В диапазоне 0,5 – 5 мкГн при измерении необходимо брать в расчет индуктивность устройства. Показания менее 0,5 мкГн являются примерными.
  2. Измерение неизвестной величины индуктивности. Зная частоту катушки, при помощи упрощенной формулы расчета индуктивности можно определить это значение.
  3. В случае, когда порог срабатывания кремниевых p-n переходов выше амплитуды измеряемой электрической цепи (от 70 до 80 мВ), можно измерить индуктивность катушек непосредственно в самой схеме (предварительно обесточив ее). Поскольку собственная емкость приставки имеет большое значение (25330 пФ), погрешность подобных измерений будет составлять не более 5% при условии, что емкость измеряемой цепи не превышает 1200 пФ.

При подключении приставки непосредственно к катушкам расположенным на плате применяется проводка длиной 30 сантиметров с зажимами для фиксации или щупами. Провода скручиваются с расчетом один виток на сантиметр длины. В таком случае образуется индуктивность приставки в диапазоне 0,5 – 0,6 мкГн, которую также необходимо учитывать при измерениях индуктивности.

В продолжение темы:
Подарки

Представляет собой логичную систему, с которой школьники в России тесно знакомятся начиная с 8 класса.Синтаксический разбор включает в себя полную характеристику...

Новые статьи
/
Популярные