Флуктуации вакуума. Энергия вакуума Виртуальное зеркало, реальные фотоны

Давления, измеренные на шкале, которая использует нулевое значение в качестве опорной точки, называются абсолютными давлениями. Атмосферное давление на поверхности Земли изменяется, но составляет приблизительно 10 5 Па (1000 мбар). Это абсолютное давление, потому что оно выражается в отношении нулевого.

Датчик предназначенный для измерения давления, выраженного в отношении атмосферного давления, и, таким образом, показывающий ноль, когда его измерительный порт содержит молекулы при атмосферном давлении. Измерения проводимые таким датчиком известны как измерение давления в относительном режиме. Таким образом, разница между значением абсолютного давления и значением избыточного является переменным значением атмосферного:

Абсолютное = избыточное + атмосферное.

Чтобы избежать серьезных ошибок, важно знать какой режим измерения вакуума используется: абсолютный или относительный. Обратите внимание, что эталонная линия для измерений калибровочной моды не является прямой, что иллюстрирует изменчивость атмосферного давления.

Единицы измерения вакуума и давления

Исторические единицы

К сожалению, в измерениях вакуума и давления существует множество единиц, что создает значительные проблемы как для новичков, так и для опытных специалистов. К счастью, жизнь становится легче, так как устаревшие и плохо определенные единицы исчезают в пользу единицы измерения СИ.

Многие старые единицы имеют очевидное практическое и историческое происхождение; Например, дюйм воды был единицей, используемой, когда давление измерялось водяным столбом, верхняя поверхность которого была видна на дюймовой шкале. Первоначально точность измерений вакуума, требуемая для таких систем, соответствовала довольно грубым методам измерения вакуума, и никто не беспокоился, была ли вода горячей или холодной. По мере роста технологических потребностей возникла потребность в более последовательных измерениях. Математические модели измерительных приборов были значительно усовершенствованы. Например, в одной традиционной схеме измерения вакуума ртутного барометра было принято для дифференциальных разложений между ртутью в колонне, стеклом, из которого изготовлена колонна, латунью, из которой изготовлена шкала, и стальным резервуаром. Однако даже с уточненными определениями и связанной с ними математикой многие традиционные единицы не могут использоваться в рамках современных технологий.

Единица измерения СИ

Единица измерения СИ - это паскаль, сокращенно обозначаемый Па, имя дано давлению одного ньютона на квадратный метр (Н/м 2). В то время как легко визуализировать один квадратный метр, один ньютон сложнее, но он примерно равен нисходящей силе, действующей на руку, когда держит маленькое яблоко (если держатель стоит на поверхности земли!) Что касается повседневной жизни, один паскаль представляет собой очень небольшую величину, при этом атмосферное составляет примерно 100 000 Па. На дне кастрюли, наполненной водой, давление из-за глубины воды будет примерно на 1000 Па больше, чем на поверхности воды. Чтобы избежать использования громоздких чисел, кратным 103 и 0,001 назначаются префиксы, так что, например, 100 000 Па (105 Па) могут быть записаны как 100 кПа или 0,1 МПа.

Единицы измерения вакуума и конвертация

Взаимоотношения между паскалем и некоторыми другими единицами показаны в таблице, но обратите внимание, что не все могут быть или могут быть точно выражены. Надстрочные римские цифры в таблице относятся к примечаниям, которые следуют за ней.

Методы измерения вакуума

Общие положения

В приборах для измерения вакуума используется ряд совершенно разных принципов. Некоторые из них имеют фундаментальный характер, например, измерение высоты столба жидкости с известной плотностью. Одним из таких примеров является ртутный барометр, в котором атмосферное давление может быть уравновешено столбом ртути. Расширение этой идеи для использования при высоких давлениях - использование металлических гирь, действующих над известной площадью, чтобы обеспечить силу, а не вес жидкости.

Часто вакуум может быть определено путем измерения механической деформации чувствительного элемента, который подвергается упругой деформации, когда изменяется разность давлений на его поверхностях. Механический прогиб может быть реализован и воспринят несколькими способами. Одним из наиболее распространенных типов движущихся механических элементов является эластичная диафрагма. Другим примером является труба Бурдона, где внутреннее давление вынуждает выпрямляться изогнутую трубку.

Такая механическая деформация может быть обнаружена несколькими способами: серией механических рычагов для непосредственного отображения деформации, измерения сопротивления в тензодатчике, измерения емкости, изменения частоты резонирующего элемента при растяжении или сжатии и т. д.

Когда вакуума глубокий и поэтому механическое отклонение слишком мало для измерения вакуума, используются косвенные средства, которые измеряют физические свойства, такие как теплопроводность, ионизация или вязкость, которые зависят от плотности числа молекул.

Столб жидкости

Один из самых ранних методов измерения вакуума, и все еще один из самых точных сегодня, состоит в том, что столб жидкости способен вытеснять жидкость из трубы.

Манометр, показанный на рисунке, представляет собой, по существу, заполненную жидкостью U-образную трубку, где вертикальное разделение поверхностей жидкости дает измерение разности давлений. На уровне нулевой точки d; давление L, обеспечивается жидкостью над ней, плюс давление p 2 в верхней части трубки. В равновесии колонка поддерживается восходящим давлением p 1 , которое передается через жидкость из другой конечности.

Давление p 1 на нижней поверхности жидкости определяется как:

Где h - вертикальная высота столбца жидкости выше уровня нулевой точки,P Плотность жидкости, g - локальное значение ускорения силы тяжести. Если верхняя труба соединена с атмосферой (р2 = атмосферное давление), то р1 является калибровочным давлением; Если верхняя труба вакуумирована (т. Е. Р2 = ноль), то р1 является абсолютным давлением и прибор становится барометром.

Ртуть, вода и масло используются в различных конструкциях манометра, хотя для барометрических целей всегда используется ртуть; Его плотность более чем в 13 раз превышает плотность воды или масла, и поэтому требуется гораздо более короткая колонна. Около 0,75 м при измерении атмосферного давления. Плотность ртути также значительно более стабильна, чем плотность других жидкостей.

Измерение вакуума путём деформации упругого элемента.

Когда давление приложено к деформирующему элементу, он будет двигаться. Для создания датчика давления перемещение должно быть достаточно маленьким, чтобы оставаться в пределе упругости материала, но достаточно большим, чтобы быть обнаруженным с достаточным разрешением. Поэтому при более низком давлении используются тонкие гибкие компоненты, а при более высоких давлениях - более жесткие. Существует несколько методов, используемых для определения степени отклонения. Они варьируются от механического усиления, производя видимое отклонение указателя до электронных методов обнаружения.

Перечисленные ниже инструменты включают не все типы, а те, которые обычно широко используются в промышленности.

Диафрагмы

Мембрана, прикрепленная к жесткому основанию, будет подвергаться воздействию силы, если между каждой стороной существует разница в давлении. Диафрагмы проще производить круглыми, но возможны и другие формы. Разность вызовет отклонение диафрагмы с максимальным отклонением в центре, и это отклонение можно измерить с помощью различных механических и электронных датчиков. Поскольку центр отклоняется, поверхность диафрагмы также напряжена и может показать, с одной стороны, сжимающие напряжения вокруг внешней кромки и растягивающие напряжения вокруг центральной части диафрагмы. Эта конфигурация напряжений может быть обнаружена с помощью тензодатчиков, и из этой информации можно рассчитать вакуум.

Капсулы. По существу капсулы изготавливаются из пары диафрагм, соединенных по их внешним краям. У одного будет центральная арматура, через которую поступает давление, а перемещение центра другой диафрагмы относительно первого определяется датчиком некоторого типа. Ясно, что действие двух диафрагм, действующих последовательно, должно удвоить отклонение.

Сильфоны. Не существует четкого различия между сильфоном и капсулами, но сильфоны обычно имеют несколько секций, последовательно уложенных друг в друга, и, как правило, гофры малы по сравнению с диаметром. Сильфоны могут быть свернуты из трубы, образованы под давлением или образованы из сварных элементов.

Трубка Бурдона

Существуют различные конструкции, но типичной формой является закрытая труба с овальным поперечным сечением, изогнутая вдоль ее длины. Когда трубка находится под давлением, на стремится выпрямиться, и датчик обнаруживает это движение. Они могут быть сконструированы для работы в широком диапазоне, а также в манометрическом, абсолютном и дифференциальном режимах. Доступны простые «C» - образные, спиральные и спиральные типы. Электронное обнаружение движения конца обычно используется с кварцевыми спиральными устройствами.

Измерения вакуума путём измерения теплопроводности

Для измерения вакуума можно использовать передачу энергии от горячей проволоки через газ. Тепло переносится в газе путем молекулярных столкновений с проволокой, т.е. теплопроводностью, а скорость передачи тепла зависит от теплопроводности газа. Таким образом, точность этих приборов имеет сильную зависимость от состава газа. В области глубокого вакуума, где имеется молекулярный поток (число Кнудсена больше 3, где число Кнудсена = длина свободного пробега / характерный размер системы), теплопередача пропорциональна вакууму. Когда число молекул увеличивается, газ становится более плотным, и молекулы начинают сталкиваться друг с другом чаще. В этой так называемой переходной области потока (или потока скольжения, 0,01 <число Кнудсена <3) простая пропорция теплоотдачи к давлению не действительна. При еще более высоких давлениях (число Кнудсена <0,01) теплопроводность практически не зависит от него. Здесь конвекционное охлаждение горячих поверхностей обычно является основным источником теплообмена.

Вакуумметры Пирани

Тепловые потери от провода (обычно от 5 до 20 мкм) могут быть определены косвенно с помощью мостовой схемы Уитстона, которая нагревает провод и измеряет его сопротивление и, следовательно, его температуру. Существует два основных типа нагреваемых элементов. Традиционная и гораздо более распространенная конфигурация состоит из тонкой металлической проволоки, подвешенной в измерительной головке. Другая конфигурация - микрообработанная структура, обычно изготовленная из кремния, покрытого тонкой металлической пленкой, такой как платина. В обычной конфигурации тонкая металлическая проволока подвешена, по меньшей мере, с одной стороны, электрически изолированной в измерительной головке и находящейся в контакте с газом. Вольфрам, никель, иридий или платина могут быть использованы для проволоки. Провод электрически нагревается, и теплопередача измеряется электронным способом. Существует три общих метода работы: метод постоянной температуры, мост с постоянным напряжением и мост с постоянным током. Все эти методы косвенно измеряют температуру провода по его сопротивлению. Основным недостатком использования датчиков Пирани является их сильная зависимость от состава газа и их ограниченная точность. Воспроизводимость датчиков Пирани, как правило, достаточно хороша до тех пор, пока не произойдет сильное загрязнение. Диапазон измерения вакуума датчиков Пирани составляет приблизительно от 10-2 Па до 105 Па, но наилучшие характеристики обычно получают между приблизительно 0,1 Па и 1000 Па.

Ионизационные датчики измерения вакуума

Когда вакуум в системе ниже приблизительно 0,1 Па (10 -3 мбар), прямые методы измерения вакуума с помощью таких средств, как отклонение диафрагмы или измерение свойств газа, таких как теплопроводность, уже не могут быть легко применимы, Поэтому необходимо прибегнуть к методам, которые в основном подсчитывают количество присутствующих молекул газа, т. е. измеряет плотность, а не вакуум. Из кинетической теории газов для данного газа с известной температурой Т давление р непосредственно связано с плотностью числа n через уравнение (в пределе идеального газа):

Где с - постоянная. Одним из наиболее удобных методов измерения плотности числа является использование некоторой методики ионизации молекул газа и последующего сбора ионов. В большинстве практических вакуумных датчиков для осуществления ионизации используются электроны с умеренной энергией (50 эВ до 150 эВ). Результирующий ионный ток напрямую связан с вакуумом и, таким образом, может быть выполнена калибровка. Последнее утверждение верно только в отношении конечного диапазона давлений, который определит рабочий диапазон прибора. Верхний предел давления будет достигнут, когда плотность газа будет достаточно большой, что при создании иона имеет значительную вероятность взаимодействия с молекулами нейтрального газа или свободными электронами в газе, так что ион сам нейтрализуется и не может достичь коллектора, для практических целей в типичных лабораторных системах или промышленных установках это можно принять за 0,1 Па (10 -3 мбар).

Нижний предел вакуума манометра будет достигнут, когда электрический ток утечки в измерительной головке или измерительной электронике станет сравнимым с измеряемым ионным током или когда другой физический эффект (например, влияние посторонних рентгеновских лучей) вызовет появление токов этого величина. Для большинства датчиков, описанных в Руководстве, эти пределы лежат ниже 10 -6 Па (10 -8 мбар).

Основным калибровочным уравнением для ионизационной калибровки является:

Ic - ионный ток K - постоянная, содержащая вероятность ионизации молекулы газа какими бы то ни было средствами и вероятность сбора результирующего иона n - плотность числа молекул газа Ie - ток ионизирующего электрона.

Вероятность ионизации молекулы газа будет зависеть от множества факторов, и поэтому ионизационный датчик будет иметь разные значения чувствительности для разных видов газа. Большинство практических вакуумных датчиков используют электронное воздействие для ионизации молекул газа, и это может быть достигнуто просто «кипящими» электронами от нити накаленной проволоки и притягивающей их к какому-то электронному коллектору. Затем ионы притягиваются к коллектору. К сожалению, вероятность ионизации молекулы газа электроном настолько мала за один проход в калибровке нормальных размеров, что необходимо увеличить длину пробега электронов и тем самым увеличить вероятность того, что какой-либо один электрон создает ион.

Широко используются два метода. В калибровочном ионизационном датчике горячего катода электроны, полученные в горячей нити накала, притягиваются к сетке, изготовленной из очень тонкой проволоки и при положительном электрическом потенциале. Поскольку сетка открыта, есть очень большая вероятность того, что электрон пройдет через сетку и не ударит провод. Если сетка окружена экраном с отрицательным электрическим потенциалом, электрон будет отражен этим экраном и будет притягиваться обратно к сетке. Этот процесс может происходить много раз, прежде чем электрон окончательно попадает в сетку. В результате очень длинные траектории электронов могут быть достигнуты в небольшом объеме. В противоположность этому, ионы притягиваются непосредственно в коллектор.

Ионизационная лампа с холодным катодом обходится без горячей нити и использует комбинацию электрических и магнитных полей. Любой электрон будет вращаться вокруг магнитных силовых линий до того, как он, в конечном счете, будет собран на положительно заряженном аноде. Фактически, длина пути будет такой большой, а вероятность ионизации настолько велика, что после запуска будет создан самоподдерживающийся газовый разряд, при условии, что ионы будут быстро вытесняться из области разряда ионным коллектором.

Выбор устройства для измерения вакуума

Прежде чем выбрать прибор для измерения вакуума и определить подходящего поставщика, важно установить критерии отбора. Они будут включать множество факторов, и этот раздел призван помочь потенциальному пользователю сделать выбор.

    Глубина измерения вакуума

    Характеристики среды

    Внешняя среда

    Физические характеристики прибора

    Тип использования

    Безопасность

    Установка и обслуживание

    Преобразование сигнала

В конце мая прошлого года многие популярные газеты пестрели заголовками: «Ученые получили энергию из вакуума!». Владельцы вакуумных насосов радостно потирали руки и в мечтах уже видели себя новыми олигархами. Однако даровой энергии из вакуума на рынке пока не появилось.

В 1948 году голландские физики-теоретики Хендрик Казимир и Дирк Полдер в поисках объяснения свойств коллоидных пленок рассмотрели взаимодействие молекул, поляризующих друг друга электромагнитными силами. Оказалось, что сила притяжения поляризуемой молекулы к металлической пластинке обратно пропорциональна четвертой степени расстояния между ними.

Но этим дело не закончилось. Казимир обсуждал свои выводы с Нильсом Бором, и тот заметил, что притяжение можно объяснить и совершенно иначе. Тогда уже было доказано, что виртуальные частицы физического вакуума влияют на энергетические уровни внутриатомных электронов (лэмбовский сдвиг). По мнению Бора, вычисленный Казимиром эффект мог иметь точно такую же природу. Казимир произвел соответствующие расчеты и получил ту же самую формулу.

Эффект Казимира

В том же году Казимир предложил простой и наглядный пример силового воздействия вакуума. Представим себе две плоские проводящие пластины, расположенные параллельно. Плотность виртуальных фотонов между ними будет меньшей, нежели снаружи, поскольку там смогут возбуждаться лишь стоячие электромагнитные волны строго определенных резонансных частот. В результате в пространстве между пластинами давление фотонного газа окажется меньше давления извне, из-за чего они будут притягиваться друг к другу, причем опять-таки с силой, обратно пропорциональной четвертой степени ширины щели (при сближении пластин набор допустимых частот стоячих волн сокращается, так что различие плотности «внутренних» и «внешних» фотонов возрастает). Реально такое притяжение становится заметным на расстоянии нескольких микрометров. Это явление и получило название эффекта Казимира.

С современной точки зрения
именно вакуумные флуктуации порождают силовые взаимодействия между молекулами. Поэтому они проявляют себя при сближении тел различной формы (не обязательно плоских), изготовленных из металлов или диэлектриков. Первыми это полвека назад выяснили сотрудники теоротдела Института физических проблем Евгений Лифшиц, Игорь Дзялошинский и Лев Питаевский. Они же показали, что при определенных условиях на смену казимировскому притяжению приходит отталкивание. Достоверное экспериментальное подтверждение существования такого притяжения было получено в 1997 году Стивом Ламоро, Умаром Мохидином и Анушри Роем. Казимировские силы отталкивания впервые экспериментально измерила в 2009 году группа под руководством Джереми Мандэя.

Движущиеся зеркала

В 1970 году физик из американского Университета Брандейса Джеральд Мур опубликовал статью, где теоретически рассмотрел поведение вакуума в полости, ограниченной двумя сближающимися или расходящимися плоскопараллельными зеркалами. Он показал, что такие зеркала могут усилить вакуумные флуктуации... и заставить их породить реальные фотоны. Однако, согласно расчетам Мура, для генерации фотонов в сколь-нибудь заметных количествах зеркала должны иметь релятивистскую скорость. В конце 1980-х проблема «раскачки» вакуумных флуктуаций заинтересовала многих ученых. Ее теоретический анализ показал, что вакуум способен рождать реальные фотоны не только около материальных тел, обладающих субсветовой скоростью, но и вблизи материалов, быстро изменяющих свои электрические или магнитные свойства. Такое превращение виртуальных вакуумных флуктуаций в реальные кванты назвали динамическим, или нестационарным, эффектом Казимира.

Виртуальное зеркало, реальные фотоны

Обычный эффект Казимира заключается в притяжении двух плоских параллельных пластин за счет «селекции» резонансных стоячих волн между ними. Динамический эффект предполагает «развиртуализацию» фотонов при быстром (релятивистском) движении зеркал. Понятно, что чисто механическим способом повторить такую схему невозможно, поэтому группа из Университета Чалмерса в Гетеборге использовала «виртуальные» зеркала - с помощью колебаний магнитного поля они изменяли длину волновода, что аналогично движению его границы с релятивистскими скоростями.

До недавнего времени эти исследования ограничивались чистой теорией. Прямое воспроизведение схемы Мура, разумеется, не под силу современным технологиям, которые не умеют разгонять зеркала из любых материалов до субсветовых скоростей. В научной литературе неоднократно обсуждались более практичные устройства для наблюдения динамического эффекта Казимира - например, пьезоэлектрические вибраторы и высокочастотные электромагнитные резонаторы. В последние годы физики, работающие в этой области, утвердились во мнении, что эти эксперименты вполне осуществимы.

Проверка на практике

Первыми успеха добились Кристофер Уилсон и его коллеги по Технологическому университету Чалмерса в шведском городе Гетеборге вместе с коллегами из Австралии и Японии. «Овеществление» виртуальных фотонов происходило около волновода из алюминия, подключенного к сверхпроводящему квантовому интерферометру (два джозефсоновских туннельных перехода, параллельно соединенных в замкнутый контур). Экспериментаторы изменяли индуктивность этого контура, пропуская через него магнитный поток, осциллирующий с частотой порядка 11 ГГц. Колебания индуктивности сказывались на электрической длине волновода, которая осциллировала с вполне релятивистской скоростью (около четверти скорости распространения электромагнитных волн в волноводе, которая примерно равнялась 40% скорости света в вакууме). Волновод, как и ожидалось, излучал фотоны, извлеченные из вакуумных флуктуаций. Спектр этого излучения соответствовал теоретическим предсказаниям.

Однако использовать эту установку для получения энергии из вакуума невозможно: энергия полученного излучения неизмеримо слабее мощности, которую приходится закачивать в прибор. Это же справедливо и для прочих устройств, которыми можно воспользоваться для наблюдения динамического эффекта Казимира. В общем, вакуум - это вовсе не нефтеносный слой.

Для нас сейчас физический вакуум -- это то, что остается в пространстве, когда из него удаляют весь воздух и все до последней элементарные частицы. В результате получается не пустота, а своеобразная материя - Прародитель всего во Вселенной, рождающий элементарные частицы, из которых потом формируются атомы и молекулы.

А. Е. Акимов (11,с.24)

Так как в понятие вакуума вкладывается всепроникающая среда, находящаяся между частицами, то вакуум занимает все межчастичное пространство; следовательно, эту среду можно определить как бесчастичную форму материи, плотность которой изменяется соответственно действующим на вакуум силам. Плотность вакуума имеет весьма малое значение по сравнению с привычными для нас значениями плотности вещества: например, плотность вакуума, находящегося между молекулами газа при давлении в одну атмосферу составляет 10 -15 г/см 3 , а плотность дистиллированной воды при тех же условиях - 1 г/см 3 (20, с. 60).

Гравитация, присущая любым массам, присуща и массе вакуума. На основании этого постулата сила взаимодействия тела с любой частью вакуума будет определяться законом всемирного тяготения. То есть тела притягивают к себе вакуум подобно тому, как Земля притягивает находящиеся на ней тела. Поэтому при движении какого-либо тела вместе с ним будет двигаться (увлекаться) и окружающий его вакуум. Разумеется, это увлечение будет только в том случае, если на этот вакуум не действует большая сила (от гравитационного воздействия других тел), удерживающая вакуум от этого увлечения. Однако вакуум не просто увлекается за движущимся телом, а "выполняет роль подлинного управителя всякого движения. В образном представлении, вакуум, словно бульдог, вцепляется в любой макрообъект с тем большим усилием, чем массивнее его жертва. Вцепившись, он уже никогда не отпускает ее, сопровождая во всех странствиях по космическому пространству. Физически это означает, что вакуум и контролируемый им объект представляют собой замкнутую систему” (21, с, 27).

Уникальные опыты Физо и Майкельсона показали, что в природе нет абсолютно неподвижного вакуума. Вакуум, обладая массой, всегда увлекается тем телом, гравитационные силы которого преобладают, В указанных опытах таким телом является Земля, увлекающая околоземной вакуум (в опыте Майкельсона) и не позволяющая движущемуся на Земле телу увлекать вакуум, находящийся между частицами тела (в опыте Физо).

В современной интерпретации физический вакуум представляется сложным квантовым динамическим объектом, который проявляет себя через флуктуации. Физический вакуум рассматривают как материальную среду, изотропно (равномерно) заполняющую все пространство (и свободное пространство и вещество), имеющую квантовую структуру, ненаблюдаемую в невозмущенном состоянии (33. с. 4).

Для лучшего понимания физического вакуума было признано целесообразным рассматривать его как электронно-позитронную модель Дирака в ее несколько измененной интерпретации.

Представим физический вакуум как материальную среду, состоящую из элементов, образуемых парами частиц и античастиц (по Дираку - электронно-позитронная пара).

Если частицу и античастицу вложить друг в друга, то такая система будет истинно электронейтральной. А так как обе частицы обладают спином, то система "частица-античастица” должна представлять пару вложенных друг в друга частиц с противоположно направленными спинами. Вследствие истинной электронейтральности и противоположности спинов такая система не будет обладать и магнитным моментом (33, с. 5). Систему из частиц и античастиц в указанном выше виде, обладающую указанными свойствами, называют фитоном. Плотная упаковка фитонов и образует среду, называемую физическим вакуумом. Однако следует помнить, что эта модель весьма упрощена, и было бы наивно усматривать в построенной модели истинную структуру физического вакуума (рис. 1, а, б).

Рассмотрим наиболее важные в практическом отношении случаи возмущения физического вакуума разными внешними источниками (86. с, 940).

1. Пусть источником возмущения является заряд q (рис. 1, в). Действие заряда будет выражено в зарядовой поляризации физического вакуума, и это его состояние проявляется как электромагнитное поле (Е-поле). Именно на это указывал ранее в своих работах академик АН СССР Я. Б. Зельдович.

2. Пусть источником возмущения является масса m (рис, 1, г). Возмущение физического вакуума массой т будет выражаться в симметричных колебаниях элементов фитонов вдоль оси на центр объекта возмущения, как это условно изображено на рисунке. Такое состояние физического вакуума характеризуется как спиновая продольная поляризация и интерпретируется как гравитационное поле (G-поле). Такая идея была высказана еще А. Д. Сахаровым (87, с. 70). По его мнению, гравитация вообще не является отдельной действующей силой, а возникает в результате изменений квантово-флуктуационной энергии вакуума, когда имеется какая-либо материя, подобно тому, как это происходило с образованием сил в опыте Г. Казимира. А. Д. Сахаров считал, что присутствие материи в море частиц с абсолютно нулевой энергией вызывает появление несбалансированных сил, движущих материю, называемых гравитацией (86,с.940).

3. Пусть источником возмущения является классический спин (рис. 1, д). Спины фитонов, которые совпадают с ориентацией спина источника, сохраняют свою ориентацию. Спины фитонов, которые противоположны спину источника, под действием этого источника испытывают инверсию. В результате физический вакуум перейдет в состояние поперечной спиновой поляризации. Это состояние интерпретируется как спиновое поле (S-поле), то есть поле, порождаемое классическим спином. Такое поле называют еще торсионным полем (31, с. 31).

В соответствии с изложенным можно считать, что единая среда - физический вакуум может находиться в разных поляризационных состояниях, EQS-состояниях. Причем физический вакуум в фазовом состоянии, соответствующем электромагнитному полю, обычно рассматривается как сверхтекучая жидкость. В фазовом состоянии спиновой поляризации физический вакуум ведет себя как твердое тело.

Указанные соображения примиряют две взаимоисключающие точки зрения - точку зрения конца XIX века и начала XX века, когда эфир рассматривали как твердое тело, и представление современной физики о физическом вакууме как о сверхтекучей жидкости. Правильны обе точки зрения, но каждая для своего фазового состояния (33, с. 13).

РИС. 1 Диаграмма поляризационных состояний физического вакуума

Все три поля: гравитационное, электромагнитное и спиновое - являются универсальными. Эти поля проявляются себя и на микро-, и на макроуровнях. Здесь уместно вспомнить слова академика АН СССР Я. И. Померанчука; Вся физика - это физика вакуума”, или академика ЭАН Г. И. Наана: “Вакуум есть все, и все есть вакуум" (63,с.14).

В результате знакомства с теорией физического вакуума становится ясно, что современная природа не нуждается в “объединениях". В природе есть только физический вакуум и его поляризационные состояния, а “объединения” лишь отражают степень нашего понимания взаимосвязи полей (31, с. 32).

Следует отметить еще один чрезвычайно важный факт, касающийся физического вакуума как источника энергии.

Традиционная точка зрения сводилась к утверждению, что, так как физический вакуум является системой с минимальной энергией, то никакую энергию из такой системы извлечь нельзя. При этом, однако, не учитывалось, что физический вакуум - это динамическая система, обладающая интенсивными флуктуациями, которые и могут быть источником энергии. Возможность эффективного взаимодействия спинирующих (вращающихся) объектов с физическим вакуумом позволяет с новых позиций рассмотреть возможность создания торсионных источников энергии.

Согласно Дж, Уиллеру, планковская плотность энергии физического вакуума составляет 10 95 г/см 3 , в то время как плотность энергии ядерного вещества равна 10 14 г/см 3 . Известны и другие оценки энергии вакуумных флуктуации, но все они существенно больше оценки Дж. Уиллера (31, с. 34). Следовательно, можно сделать следующие многообещающие выводы:

Энергия вакуумных флуктуации весьма велика в сравнении с любым другим видом энергии;

Очень часто к нам обращаются люди, которые хотят купить вакуумный насос, но слабо представляют, что такое вакуум.
Попытаемся разобраться, что же это такое.

По определению, вакуум – это пространство, свободное от вещества (от латинского слова «vacuus» - пустой).
Существует несколько определений вакуума: технический вакуум, физический вакуум, космический вакуум и т.д.
Мы будем рассматривать технический вакуум, который определяется как сильно разреженный газ.

Рассмотрим на примере, что такое вакуум и как его измеряют.
На нашей планете существует атмосферное давление, принятое за единицу (одна атмосфера). Оно меняется в зависимости от погоды, высоты на уровнем моря, но мы не будем принимать это во внимание, так как это не будет никак влиять на понимание понятия вакуум.
Итак, мы имеем давление на поверхности земли равное 1 атмосфере. Всё, что ниже 1 атмосферы (в закрытом сосуде), называется техническим вакуумом.

Возьмём некий сосуд и закроем его герметичной крышкой. Давление в сосуде будет равно 1 атмосфере. Если мы начнём откачивать из сосуда воздух, то в нём возникнет разряжение, которое и называется вакуумом.
Рассмотрим на примере: в левом сосуде 10 кружочков. Пусть это будет 1 атмосфера.
«откачаем» половину – получим 0,5 атм, оставим один – получим 0,1 атм.

Так как в сосуде всего одна атмосфера, то и максимально возможный вакуум мы можем получить (теоретически) ноль атмосфер.
"Теоретически" - т.к. выловить все молекулы воздуха из сосуда практически невозможно.
По этому, в любом сосуде, из которого откачали воздух (газ) всегда остается какое-то его минимальное количество. Это и называют "остаточным давлением", то есть давление, которое осталось в сосуде после откачки из него газов.
Существуют специальные насосы, которые могут достичь глубокого вакуума до 0,00001 Па, но всё равно не до нуля.
В обычной жизни редко когда требуется вакуум глубже 0,5 - 10 Па (0,00005-0,0001 атм).

Есть несколько вариантов измерения вакуума, которые зависят от выбора точки отсчёта:
1. За единицу принимается атмосферное давление. Всё, что ниже единицы – вакуум.
То есть шкала вакуумметра от 1 до 0 атм (1…0,9…0,8…0,7…..0,2…0,1….0).
2. За ноль принимается атмосферное давление. То есть вакуум – все отрицательные числа меньше 0 и до -1.
То есть шкала вакуумметра от 0 до -1 (0, -0,1…-0,2….,-0,9,…-1).
Также шкалы могут быть в кПа, mBar, но это всё аналогично шкалам в атмосферах.

На картинке показаны вакуумметры с различными шкалами, которые показывают одинаковый вакуум:

Из всего сказанного выше видно, что величина вакуума не может быть больше атмосферного давления.

К нам почти каждый день обращаются люди, которые хотят получить вакуум -2, -3 атм и т.д.
И они очень удивляются когда узнают, что это невозможно (кстати, каждый второй из них говорит, что "вы сами ничего не знаете", "а у соседа так" и т.д. и.т.п.)

На самом деле, все эти люди хотят формовать детали под вакуумом, но чтобы прижим детали был более 1 кг/см2 (1 атмосферы).
Этого можно достичь, если накрыть изделие плёнкой, откачать из под неё воздух (в этом случае, в зависимости от созданного вакуума, максимальный прижим составит 1 кг/см2 (1 атм=1 кг/см2)), и после этого поместить это всё в автоклав, в котором будет создано избыточное давление. То есть для создания прижима в 2 кг/см2, достаточно создать в автоклаве избыточное давление в 1 атм.

Теперь несколько слов о том, как многие клиенты измеряют вакуум на выставке ООО "Насосы Ампика", у нас в офисе:
включают насос, прикладывают палец (ладонь) к всасывающему отверстию вакуумного насоса и сразу делают вывод о величине вакуума.

Обычно, все очень любят сравнивать советский вакуумный насос 2НВР-5ДМ и предлагаемый нами его аналог VE-2100.
После такой проверки, всегда говорят одно и тоже – вакуум у 2НВР-5ДМ выше (хотя на самом деле оба насоса выдают одинаковые параметры по вакууму).

В чем же причина такой реакции? А как всегда – в отсутствии знаний законов физики и что такое давление вообще.

Немного ликбеза: давление «P» – это сила, которая действует на некоторую площадь поверхности, направленная перпендикулярно этой поверхности (отношение силы «F» к площади поверхности «S»), то есть P=F/S.
По-простому – это сила, распределённая по площади поверхности.
Из этой формулы видно, что чем больше площадь поверхности, тем меньше будет давление. А также сила, которая потребуется для отрыва руки или пальца от входного отверстия насоса, прямо пропорциональна величине площади поверхности (F=P*S).
Диаметр всасывающего отверстия у вакуумного насоса 2НВР-5ДМ – 25 мм (площадь поверхности 78,5 мм2).
Диаметр всасывающего отверстия у вакуумного насоса VE-2100 – 6 мм (площадь поверхности 18,8 мм2).
То есть для отрыва руки от отверстия диаметром 25 мм, требуется сила в 4,2 раза большая, чем для диаметра отверстия 6 мм (при одинаковом давлении).
Именно по этому, когда вакуум измеряют пальцами, получается такой парадокс.
Давление «P», в этом случае, рассчитывается как разница между атмосферным давлением и остаточным давлением в сосуде (то есть вакуумом в насосе).

Как посчитать силу прижима какой-либо детали к поверхности?
Очень просто. Можно воспользоваться формулой приведенной выше, но попробуем объяснить попроще.
Например, пусть требуется узнать, с какой силой может быть прижата деталь размером 10х10 см при создании под ней вакуума насосом ВВН 1-0,75.

Берём остаточное давление, которое создаёт этот вакуумный насос серии ВВН.
Конкретно у этого водокольцевого насоса ВВН 1-0,75 оно составляет 0,4 атм.
1 атмосфера равна 1 кг/см2.
Площадь поверхности детали – 100 см2 (10см х10 см).
То есть, если создать максимальный вакуум (то есть давление на деталь будет 1 атм), то деталь прижмётся с силой 100 кг.
Так как у нас вакуум 0,4 атм, то прижим составит 0,4х100=40 кг.
Но это в теории, при идеальных условиях, если не будет подсоса воздуха и т.п.
Реально нужно это учитывать и прижим будет на 20…40% меньше в зависимости от типа поверхности, скорости откачки, и т.п.

Теперь пару слов о механических вакуумметрах.
Эти устройства показывают остаточное давление в пределах 0,05…1 атм.
То есть он не покажет более глубокого вакуума (будет всегда показывать «0»). Например, в любом пластинчато-роторном вакуумном насосе, по достижении его максимального вакуума, механический вакуумметр всегда будет показывать «0». Если требуется визуальное отображение значений остаточного давления, то нужно ставить электронный вакуумметр, например VG-64 .

Часто к нам приходят клиенты, которые формуют детали под вакуумом (например, детали из композиционных материалов: углепластика, стеклопластика и т.п.), это нужно для того, чтобы во время формовки из связующего вещества (смолы) выходил газ и тем самым улучшались свойства готового продукта, а так же деталь прижималась к форме плёнкой, из-под которой откачивают воздух.
Встаёт вопрос: каким вакуумным насосом пользоваться – одноступенчатым или двухступенчатым?
Обычно думают, что раз вакуум у двухступенчатого выше, то и детали получаться лучше.

Вакуум у одноступенчатого насоса 20 Па, у двухступенчатого 2 Па. Кажется, что раз разница в давлении в 10 раз, то и прижиматься деталь будет гораздо сильнее.
Но так ли это на самом деле?

1 атм = 100000 Па = 1 кг/см2.
Значит разница в прижиме плёнки при вакууме 20 Па и 2 Па составит 0,00018 кг/см2 (кому не лень – посчитает сам).

То есть, практически, разницы никакой не будет, т.к. выигрыш в 0,18 г в силе прижима погоды не сделает.

Как рассчитать за какое время вакуумный насос откачает вакуумную камеру?
В отличии от жидкостей, газы занимают весь имеющийся объем и если вакуумный насос откачал половину воздуха, находящегося в вакуумной камере, то оставшаяся часть воздуха вновь расширится и займет весь объем.
Ниже приведена формула для вычисления этого параметра.

t = (V/S)*ln(p1/p2)*F , где

t - время (в часах) необходимое для откачки вакуумного объема от давления p1 до давления p2
V - объем откачиваемой емкости, м3
S - быстрота действия вакуумного насоса, м3/час
p1 - начальное давление в откачиваемой емкости, мбар
p2 - конечное давление в откачиваемой емкости, мбар
ln - натуральный логарифм

F - поправочный коэффициент, зависит от конечного давления в емкости p2:
- p2 от 1000 до 250 мбар F=1
- p2 от 250 до 100 мбар F=1,5
- p2 от 100 до 50 мбар F=1,75
- p2 от 50 до 20 мбар F=2
- p2 от 20 до 5 мбар F=2,5
- p2 от 5 до 1 мбар F=3

В двух словах, это всё.
Надеемся, что кому-нибудь эта информация поможет сделать правильный выбор вакуумного оборудования и блеснуть знаниями за кружкой пива...

Термин "вакуум ", как физическое явление - среда, в которой давление газа ниже атмосферного давления.

Количественной характеристикой вакуума служит абсолютное давление. Основной единицей измерения давления в Международной системе (СИ) служит Паскаль (1 Па = 1Н/м 2). Однако, на практике встречаются и другие единицы измерения, такие как миллибары (1 мбар = 100Па) и Торры или миллиметры ртутного столба (1 мм.рт.ст. = 133,322 Па). Данные единицы не относятся к СИ, но допускаются для измерения кровяного давления.

Уровни вакуума

В зависимости от того, на сколько давление ниже атмосферного (101325 Па), могут наблюдаться различные явления, вследствие чего могут использоваться различные средства для получения и измерения такого давления. В наше время выделяют несколько уровней вакуума, каждый из которых имеет свое обозначение в соответствии с интервалами давления ниже атмосферного:

  • Низкий вакуум (НВ): от 10 5 до 10 2 Па,
  • Средний вакуум (СВ): от 10 2 до 10 -1 Па,
  • Высокий вакуум (ВВ): от 10 -1 до 10 -5 Па,
  • Сверхвысокий вакуум (СВВ): от 10 -5 до 10 -9 Па,
  • Черезвычайно высокий вакуум (ЧВВ):

Данные уровни вакуума в зависимости от области применения разделяют на три производственные группы.

- Низкий вакуум : в основном используется там где требуется откачка большого количества воздуха. Для получения низкого вакуума используют электромеханические насосы лопастного типа, центробежного, насосы с боковым каналом, генераторы потока и т.д.

Низкий вакуум применяется, например, на фабриках шелкотрафаретной печати.

- Промышленный вакуум : термин “промышленный вакуум” соотвествует уровню вакуума от -20 до -99 кПа. Данный диапазон используется в большинстве применений. Индустриальный вакуум получают с помощью ротационных, жидкостно-кольцевых,поршневых насосов и лопастных вакуумных генераторов по принципу Вентури. Область применения промышленного вакуума включает в себя захват присосками, термоформование, вакуумный зажим, вакуумная упаковка и др.

- Технический вакуум : соответствует уровню вакуума от -99 кПа. Такой уровень вакуума получают при помощи двухуровневых ротационных насосов, эксцентриковых роторных насосов, вакуумных насосов Рутса, турбомолекулярных насосов, диффузионных насосов, криогенных насосов и т.д

Такой уровень вакуума используется в основном при лиофилизации, металлизации и термообработке. В науке технический вакуум используется в качестве симуляции космического пространства.

Наивысшее значение вакуума на земле значительно меньше значения абсолютного вакуума, которое остается чисто теоретическим значением. Фактически, даже в космосе, несмотря на отсутствие атмосферы, имеется небольшое количество атомов.

Основным толчком к развитию вакуумных технологий послужили исследования в промышленной области. В настоящий момент существует большое количество применений в различных секторах. Вакуум используется в электролучевых трубках, лампах накаливания, ускорителях частиц, в металлургии, пищевой и аэрокосмической индустрии, в установках для контроля ядерного синтеза, в микроэлектронике, в стекольной и керамической промышленности, в науке, в промышленной роботехнике, в системах захвата с помощью вакуумных присосок и т.д.

Примеры применения вакуума в промышленности

Вакуумные системы множественного захвата "ОКТОПУС"


Вакуумные присоски - общая информация

Вакуумные присоски незаменимый инструмент для захвата, подъёма и перемещения предметов, листов и различных объектов, которые трудно перемещать обычными системами, из-за их хрупкости или риска деформации.

При правильном применении присоски обеспечивают удобство, экономичность и безопасность работы, что является фундаментальным принципом для идеальной реализации проектов автоматизации на производстве.

Продолжительные исследования и внимание к требованиям наших клиентов, позволили нам производить присоски выдерживающие высокие и низкие температуры, абразивный износ, электростатические разряды, агрессивные среды, а так же не оставляют пятен на поверхности переносимых предметов. Помимо этого, присоски соответствуют стандартам безопасности EEC и пищевым стандартам FDA, BGA, TSCA.

Все присоски изготавливаются из высококачественных компонентов методом вакуумного формования и подвергаются антикоррозионной обработке для долгого срока службы. Независимо от конфигурации, все присоски имеют свою маркировку.

Система множественного захвата Октопус

В продолжение темы:
Поделки

Как считается рейтинг ◊ Рейтинг рассчитывается на основе баллов, начисленных за последнюю неделю ◊ Баллы начисляются за: ⇒ посещение страниц, посвященных звезде ⇒...